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Interfacial debonding and fibre pull-out stresses 
Part V A methodology for evaluation of interfacial properties 
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Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic 
Engineering, University of Sydney, Sydney, NSW 2006, Australia 

Based on a theoretical model developed previously by the authors in Part II of this series for 
a single fibre pull-out test, a methodology for the evaluation of interfacial properties of 
fibre-matrix composites is presented to determine the interfacial fracture toughness Gc, the friction 
coefficient p, the radial residual clamping stress q0 and the critical bonded fibre length Zma• An 
important parameter, the stress drop Acy, which is defined as the difference between the maximum 
debond stress ~* and the initial frictional pull-out stress O'if, is introduced to characterize the 
interfacial debonding and fibre pull-out behaviour. The maximum logarithmic stress drop, In(Acy), 
is obtained when the embedded fibre length L is equal to the critical bonded fibre length Zmax. The 
slope of the In(Acy)-L curve for L bigger than Zma• is found to be a constant that is related to the 
interfacial friction coefficient p. The effect of fibre anisotropy on fibre debonding and fibre pull-out 
is also included in this analysis. Published experimental data for several fibre-matrix composites 
are chosen to evaluate their interfacial properties by using the present methodology. 

1. In troduc t ion  
The properties of the fibre-matrix interface are now 
widely recognized as having a significant effect on the 
physical and mechanical behaviour of fibre-reinforced 
composites [1-71. The realization of the importance of 
interracial properties always requires proper charac- 
terization of the interface in terms of both experiments 
and micromechanics. However, the tailoring of inter- 
facial properties to optimize composite performance is 
still far from being a matured science. A common 
problem lies in the incomplete identification of the 
various parameters which may be significant. Much 
work has already been done to evaluate the interracial 
properties of various fibre composite systems. These 
properties include the interracial fracture toughness Gc 
(or interracial shear strength ~), the coefficient of 
friction p and the thermal residual clamping stress q0. 
Several experimental techniques based on single-fibre 
pull-out or push-out have been developed and suc- 
cessfully used to measure the load-displacement curve 
which can give the maximum debond and frictional 
pull-out or push-out stresses. Many relevant analyti- 
cal models have also been established, based primarily 
on shear-lag analysis to provide a theoretical frame- 
work for experimental evaluation of the interfacial 
properties. 

Recently, a series of theoretical and experimental 
studies of the fibre pull-out problem have been per- 
formed by the authors for a single fibre-reinforced 
elastic matrix composite [8-11]. In Part II of this 
series [9] an improved analysis was developed for an 
isotropic fibre-matrix composite, based on the con- 

cept of fracture mechanics where the debonded region 
was considered as an interracial crack and its exten- 
sion was dependent on a fracture energy criterion 
being satisfied. Poisson contraction of the fibre when 
subjected to tension was also included, which resulted 
in a generalized non-uniform friction along the debon- 
ded region. Solutions for the partial debond stress ~P 
during progressive debonding, and the initial fric- 
tional pull-out stress CYCr after complete debonding, 
were derived which were related to the material con- 
stants, the geometric factors of the composite constitu- 
ents and the interracial properties. However, the pro- 
cedure to evaluate the interracial properties was not 
given. 

The purpose of the present study is to provide 
a methodology, on the basis of the theoretical model 
developed in Part II [9], to determine the interracial 
properties of the fibre matrix composites. A stress 
drop analysis is presented to characterize the behav- 
iour of fibre-matrix interface debonding and fibre 
pull-out. The effect of fibre anisotropy is also con- 
sidered in this work. 

2. T h e o r y  
2.1. Govern ing  e q u a t i o n s  
The geometry of the fibre-matrix cylindrical model 
used in the previous study E8-10] is shown in Fig. 1. 
A single fibre with radius a is embedded at the centre 
of a coaxial cylindrical shell of the matrix with a radius 
b and a total length L. A set of cylindrical coordinates 
(r, 0, z) is selected so that the z-axis corresponds to the 
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Figure 1 Schematic diagram of the fibre pull-out model. 

L 

axis of the fibre and r is the distance from the fibre 
axis. A partial debonded region of length l is initially 
given at the free fibre end. In a single-fibre pull-out 
test, a tensile stress is applied to the fibre end at z = 0 
and the matrix is fixed at z = L. The model of defor- 
mations is symmetric about the fibre axis (i.e. axisym- 
metric) and thus the stress components (G', c~ ~, c~ ~, ~z) 
and the displacement components (u ~, u ~) are all inde- 
pendent of the tangential coordinate 0. In this analy- 
sis, the fibre is treated as a transversely isotropic 
elastic material and the matrix is isotropic. To simplify 
the analysis it is assumed that the fibre has a precisely 
cylindrical shape, so that the effects of surface rough- 
ness do no arise; the axial stresses in the fibre and the 
matrix are taken as the average of the fibre and the 
matrix stresses in the r-direction [3, 4, 93, respectively, 
i.e. 

2 fo' (1) G~(z) = a5 Gf(r,z)rdr 

c~(z) = ~2 G~(r,z)rdr (2) 

where 7 = a2/( b2 - a2) is the volume ratio of the fibre 
to the matrix. The subscripts f and m refer to fibre and 
matrix and the superscripts are coordinate directions. 
The complete solutions of the stress distribution for an 
isotropic fibre and matrix have been derived pre- 
viously in Part II [9]. The basic governing equations 
and the procedure used in deriving solutions for com- 
posites with a transversely isotropic fibre are similar 
to those with an isotropic fibre and are summarized 
below. When an axial stress is applied at the fibre end 
(z = 0), the stress transfers from the fibre to the matrix 

through the interfacial shear stress ~(z). The mechan- 
ical equilibrium conditions between fibre, matrix and 
interface require that 

= ~ ( z )  + l~:m(~) (3) 
7 

dGf(z) 2 
= - -~(z) (4) 

dz a 

dey~(z) 27 
- -c(z) (5) 

dz a 

~ ( z )  ~r~(r,z) 
r -~ - z  + e ~  - 0 (6) 

where z(z) represents the interfacial frictional shear 
stress zf(z) in the debonded region and the interfacial 
shear stress xi(z) in the bonded region. For a trans- 
versely isotropic fibre and and isotropic matrix, the 
general relationships between strains ~ and stresses 
ey are given by 

z ~(r,z) = ~f[orf(z) -- 2Vfqa(Z)] 

efe(r,z) = ~ (1  -- v[)q,(z) -- VeGa(Z) 

1 = 
aZm(r,z) = ~mm[Gm(Z) + 2TVmq,(z)] 

ICem(r,z) = ~ m [ V m ( ' - - ~ ) - -  ' - - ~ ] q a  

(7) 

(8) 

(9) 

1 
- -  - - V m  G z ( z )  (10) 

Em 

l(Ou=m(r,z)) 2(1 -P- Vm) ~(r,z) (11) 

where E and v represent Young's modulus and Pois- 
son's ratio, respectively, v~ and E~ are the Poisson's 
ratio and Young's modulus in the plane perpendicular 
to the fibre axis. qa(z) is the interfacial radial tensile 
stress between fibre and matrix. In Equation 11 for the 
matrix shear strain, the radial displacement gradient 
with respect to the z-direction is neglected when com- 
pared to the axial displacement gradient with respect 
to the r-direction. 

2.2. Stress components  in const i tuents 
In the debonded region (0 _< z _< 1), frictional slip 
occurs at the interface where the stress transfer is 
assumed to satisfy the Coulomb friction law for a con- 
stant coefficient of friction IX: 

�9 f = --~t(qo + qa) (12) 

where qo is the residual clamping stress (compressive) 
caused by the matrix shrinkage and differential ther- 
mal contraction of the constituents. The interfacial 
radial s t r e s s  qa(Z) arising from Poisson contraction 
between the fibre and the matrix can be obtained by 
using the condition that they must remain in contact 
during sliding so that continuity of the tangential 
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strains at the interface holds and e~ = e~ i.e. 

~Vf(Yf(Z) - -  VmO'Z(z) 
qo = (13) 

% ( 1 - v [ ) + 2 7 + 1  +Vm 

where e = Em/E f and % = Em/E[ are the ratios of 
Young's moduli. Further, the shear stress in the matrix 
r~(r,z) is expressed as a function ofz(z) for the bound- 
ary conditions that the stresses are compatible at the 
interface, i.e. ~:~(a ,z )= ~(z), and the stress is zero at 

�9 r z  the outer surface of the matrix (i.e. "Cm (b,z) = 0) at both 
the debonded and bonded regions. The axial fibre 
stress at the fibre end is equal to the applied stress (i.e. 
~f(0) = cy) and the matrix is stress-free (i.e. c~(0) = 0). 
In the bonded region (l _< z _< L), the no-slip condition 
at the interface uf (a ,z )  = u~(a ,z )  is used to drive the 
differential equation for the axial fibre stress. There- 
fore, solving the above equations with given boundary 
conditions, the stress distributions in the fibre and 
matrix and at the interface are given for the debonded 
region (0 < z < l) by 

G~(z) = r~ - co(6 - ~)[exp(Xz) - 1] (14) 

eye(z) = 7m(6 - cr)[exp(Xz)-  1] (15) 

,(b 2 - rZ)exp (Xz )  
z~d(r,z) = Xyo(6 - ~). 2r (16) 

aZm 
re(z) - ~- (~ - c~)exp(Xz) (17) 

where 

(y~ is the crack tip debond stress at the boundary 
between debonded and bonded regions at z = I and is 
determined by the continuity condition of the fibre 
axial stress: 

ch = ~ - o ) ( 6 -  ~ ) [ ex p (K l ) -  1] (28) 

2.3. Interfacial debonding criterion 
To establish the relationship between the debonding 
stress and the debonding length during fibre pull-out, 
the fracture mechanics approach is used to derive an 
interface debond criterion where the strain energy 
release rate against the incremental debond length is 
equated to the interracial fracture toughness Go, which 
is considered as a material constant: 

BUt 
2rcaGo - 8l (29) 

where Ut is the total elastic strain energy stored in the 
fibre and the matrix in both debonded and bonded 
regions and is obtained by integrating the stress com- 
ponents acting in the constituents over the volume of 
the respective regions: 

Ut 
~IO ~ O'f (Z)2 O'm (Z) 2 

L ~ ,  + s ~  

2(1 + ~ m ( r ' z ) 2 1  
+ x r d r d z  (30) 

~XVf 
~o - (18) 

~Vf q- 7Vrn 

~Vf -}" yV m k = (19) 
%(1 - v [ )  + 1 + Vm+2T 

X and ~ are the reciprocal friction length and the 
asymptotic debond stress, respectively, and are given 
by 

X = 2btk/a (20) 

(; = -- qo/mk (21) 

Also, the solutions for the bonded region (0 _< z < l) 
are obtained as 

Substituting the solutions for the three major stress 
components Gf, (3 m and rm determined in the de- 
bonded and bonded regions into Equation 30, the 
fibre-matrix interface debond criterion is derived as 

1 
Gc - 2~a[BG 2 + C( r~-cy)~  + D(6" - (7) 2] 

(31) 

in which the coefficients B, C and D are complex 
functions of material properties of the constituents 
and geometric factors, and are given by Equations A9, 
A10 and Al l ,  respectively, in part II [9]. 

~f(z) 

~(z) 

~ ( r , z )  

~,(z) 

(rlcy + G l ) s i n h [ A l / Z ( L  -- z)] -- r lc~s inh[Al /Z( l  -- z)] 

s inh[A~/2(  L _ l)] - qcy 

(qcy + cyt )s inhEAI/2(L -- z)] -- q c y s i n h [ A l / 2 ( l  - z)] 
7( 1 + rl)CY - 7 s inhEA~/Z(L _ 1)] 

7Al/Z(b 2 - r2){(qc~ + ch)cosh[Al/2(L - z)] - r lCycosh[Al /2( l  - z)]} 

2r s inh[A~/Z(L - / ) ]  

aAI/Z{(qG + ~l)COsh[Al/2(L - z)] - q c ~ c o s h [ A l / 2 ( l -  z)]} 

2 sinh [AI /Z (L  - / ) ]  

(22) 

(23) 

(24) 

(25) 

where 

A1 
7(2kvm- 1) 

q(1 + Vm)[2yb21n(b/a) - a 2] 

7 (2kvm-  1) 

~(1 - 2kvf) + 7(1 - 2kvm) 

3. Parametric study and discussion 
(26) 3.1. D e b o n d i n g  and  frict ional  pul l -out  stresses 

A typical load-displacement diagram for a single-fibre 
(27) pull-out test is shown in Fig. 2. Upon loading, there is 

an initial linear relationship until initial debonding 
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Figure 2 Schematic diagram of the stress-displacement curve for 
a single-fibre pull-out test. Subscripts d and fr are for debond and 
friction. Superscripts O, p and * are for initial, partial and maximum 
stresses, respectively. 

occurs at ~o. This debond stress increases steadily to 
a maximum value ~ and then drops to an initial 
frictional pull-out stress Cyer at which time debonding 
is complete along the fibre-matrix interface. There- 
fore, the applied stress cy in the debond criterion 
(Equation 31) may represent the initial debonding 
stress cr ~ the partial debonding stress cry, the max- 
imum debonding stress c~ and the complete debon- 
ding stress (or initial frictional pull-out) % ,  respec- 
tively, depending on the different stages of the inter- 
facial debonding process. 

From the force balance condition of the fibre in the 
debonded region, the partial debonding stress can be 
written as the sum of the crack tip debond stress and 
the stress component due to friction, i.e. 

cy~ = gl + - ~fdz (32) a 

Substituting Equation 17 into Equation 32 gives 

c0[exp(X1)- 1] 
~ = ch + ( ~ - ~ l )  (33) 

1 + co[exp(Xl) - 1] 

When the debond length reaches the embedded fibre 
length, i.e. l = L, the crack tip debond stress becomes 
zero and the initial frictional pull-out stress is ob- 
tained from Equation 33 as 

[exp(XL) - 1 ] 
I~rr = 0)6 (34) 

1 + 0)Eexp(XL)- 1] 

In many fibre pull-out tests b >> a, 0) -~ l and Equa- 
tions 33 and 34 are simplified respectively to 

ors = ch + ( 6 -  ~ l ) [ 1 - e x p ( - X / ) ]  (35) 

O'fr = 611 - exp( - XL)] (36) 

To illustrate the variations of the applied stress with 
the characteristic lengths of the composite system (i.e. 
partial debonding length I and embedded fibre length 
L) during fibre pull-out, specific results are calculated 
based on the solutions presented in the previous sec- 
tions for three different model composites, i.e. release- 
agent coated steel wire-epoxy matrix [8], carbon 
fibre-epoxy matrix [8] and untreated SiC 

TABLE I Material constants and geometric factors for several 
fibre-matrix composites 

Composite system Material constants Radii 

E f  E m of  v m a b 

(GPa) (GPa) (mm) (ram) 

Coasted steel wire- 179 2.98 0.3 0.35 0.275 6.5 
epoxy matrix I_8] 

Carbon fibre-epoxy 230 3.0 0.2 0.4 0.003 1.0 
matrix [8] 

Untreated SiC 400 70 0.17 0.2 0.071 2.8 
fibre-glass matrix 
[123 

Steel wire--epoxy 173 3.72 0.35 0.39 0.075 3.0 
matrix [14] 
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Figure 3 Plots of partial debond stress c~ as a function of debond 
length l for different embedded fibre length L: (a) release-agent 
coated steel wire-epoxy matrix composite [8] (g = 0.22, 
q0 = -7.28MPa, G~=34.7Jm -2) and (b) untreated SiC 
fibre-borosilicate glass matrix composite [12] (g = 0.048, 
qo = - 64.5 MPa, Gc = 0.964 Jm-Z). 

fibre-borosilicate glass matrix [12] whose material 
constant and geometric factors are shown in Table I. 

According to Equation 35, the partial debonding 
stress is calculated and plotted as a function of de- 
bonding length for several total embedded fibre 
lengths as shown in Fig. 3 for the release-agent coated 
steel wire-epoxy matrix composite [8] (Fig. 3a) and an 
untreated SiC fibre-borosilicate glass matrix com- 
posite [12] (Fig. 3b, respectively. These two composite 
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systems are chosen for their typical interfacial proper- 
ties (see captions of figures), namely a strong chemical 
bond in the epoxy matrix composite and a mechanical 
bond in the ceramic matrix composite. In general, the 
partial debonding stress cr] increases stably as the 
debond crack propagates, but it decreases after reach- 
ing a maximum value or* where the remaining bonded 
fibre length L -- l is equal to z . . . .  If  the embedded 
fibre length L is smaller than or equal to Zm,~, 
the debond process is totally unstable and initial 
debonding leads immediately to complete debonding. 
Consequently, the maximum debond stress is deter- 
mined simply after the debond crack is initiated (i.e. 

= 

The maximum debond stress crY', the crack tip de- 
bond ~t at l =  L -  Zmax and the frictional pull-out 
stress crfr, calculated based on Equations 35, 28 and 
36, respectively, are plotted against embedded fibre 
length L in Fig. 4 for the release-agent coated stainless 
steel wire-epoxy matrix composite [8] (Fig. 4a) and 
the untreated SiC fibre borosilicate glass matrix com- 
posite [12] (Fig. 4b). It is indicated that when 
L < z . . . .  the maximum debond stress is identical to 
the crack tip debond stress, i.e. ~ '  -- ~z. Both ~ '  and 
~z increase more rapidly than the initial frictional 
pull-out stress ~fr with increasing embedded fibre 
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Figure 4 Plots of maximum debond stress c~', crack tip debond 
stress ch and initial frictional pull-out stress O'fr against embedded 
fibre length L: (a) release-agent coated steel wire-epoxy matrix 
composite and (b) untreated SiC fibre-borosilicate glass matrix 
composite. For interfacial properties of these two composites refer 
to Fig. 3. 
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Figure 5 Plots of (a) maximum debond stress cr* and (b) initial 
frictional pull-out stress crfr against embedded fibre length L, show- 
ing the effect of fibre anisotropy for a carbon fibre--epoxy matrix 
composite [8] (~t=1.25, qo = -9.97MPa, Gc=37.7Jm -2, 
Zmax = 0.145 mm). 

length. If L > z . . . .  ( 3 " *  increases towards an asymp- 
totic value (r but ch is almost invariant with L. 

The above calculations are based on the isotropic 
properties of both fibre and matrix. However, it is 
realized that fibres used in advanced composites are 
often not isotropic. Usually, the elastic modulus is 
stiffer in the longitudinal direction than in the trans- 
verse direction. Similarly, the Poisson's ratios are not 
identical. To illustrate the effect of fibre anisotropy 
during fibre pull-out, the maximum debond stresses 
cry', calculated based on Equation 35 for different fibre 
transverse Young's moduli El( = Ef,Ef/50,Ef/IO0) are 
plotted against the embedded fibre length L for the 
carbon fibre-epoxy matrix composite in Fig. 5a. The 
Poisson's ratio v[ used in the calculations is the same 
as vf, i.e. v[ = vf. It is clearly shown that as the fibre 
transverse Young's modulus E[ increases, the max- 
imum debond stress increases for a given embedded 
fibre length. This trend is particularly obvious at large 
embedded fibre lengths. Similar results for the initial 
frictional pull-out stress ~fr calculated from Equation 
36 are shown in Fig. 5b. These results are attributed 
principally to the change in radial constraint at the 
interface resulting from Poisson contraction of the 
fibre when the transverse Young's modulus changes. 

3.2.  Critical b o n d e d  fibre length Zma x 
As discussed previously in Part  I [8] and Part II  [9] of 
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this paper and indicated in Fig. 4, the condition for 
unstable debonding requires that the derivative of the 
partial debond stress with respect to the debond 
length is equal to or less than zero, i.e. 

- -  < 0 ( 3 7 )  
~ I -  

It is shown in Fig. 4 that for a given composite system 
the stability of the debond process depends on the 
partial debond length l relative to the embedded fibre 
length L and there is a critical bonded fibre length 
Zmax( = L - I) below which the debond process is al- 
ways unstable. Accordingly, the instability condition 
(Equation 37) requires that for long embedded fibre 
lengths (L > Zmax) the debond process becomes unsta- 
ble when the slope of the o]- l  curve is zero where the 
maximum debond stress o* is obtained. Alternatively, 
for short embedded fibre lengths (L < Zmax), total un- 
stable debonding occurs right from the beginning of 
the debonding process since the slope of o]-l  curve is 
negative. It is unable to yield a closed-form solution of 
the critical bonded fibre length Zm.x because the partial 
debond stress o~ is a complex function of the embed- 
ded fibre length as well as the partial debond length. 
However, if z* is defined as a minimum fibre bonded 
length for stable debonding, the relation between z* 
and L can be solved numerically from Equation 31 (or 
Equation 35) by determining the maximum debond 
stress which appears at L - 1 = z*. Fig. 6 shows the 
minimum bonded fibre length z* plotted against the 
embedded fibre length L for the release agent coated 
stainless steel wire-epoxy matrix (Fig. 6a) and the 
untreated SiC fibre-borosilicate glass matrix (Fig. 6b) 
composites. It is worth noticing that when the embed- 
ded fibre length L is shorter than the critical bonded 
fibre length z . . . .  the minimum bonded fibre length z* 
varies linearly with L as z* = L; and if the embedded 
fibre length L is longer than z . . . .  the minimum 
bonded fibre length z* becomes a constant Zm, x. This 
implies that for a given composite system the critical 
bonded fibre length zm,x is independent of the embed- 
ded fibre length L. 

If a simplified solution for the partial debond stress 
proposed by Karbhari and Wilkins [-13] is used, ne- 
glecting the effect of Poisson contraction of the fibre 
and assuming a constant frictional shear stress ~f at 
the debonded region in the context of the maximum 
shear strength criterion, the above instability condi- 
tion gives a closed-form solution from the critical 
bonded fibre length Zmax: 

U( Zma x ~- / c o s h - I _ T b _ I  + (3g) 
g L T f \  

where 

9 = (1 + V m ) [ ? b Z l n ( b / a )  - ( a2 /Z ) ] J  (39) 
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Figure 6 Plots of minimum bQnded fibre length for stable de- 
bonding z* as a function of embedded fibre length L: (a) release- 
agent coated steel wire-epoxy matrix composite and (b) untreated 
SiC fibre-borosilicate glass matrix composite. For interracial prop- 
erties of these two composites refer to Fig. 3 

to determine the interfacial properties of fibre-matrix 
composites is given in the next section. 

4. Me thod  for evaluat ion of the 
interfacial  properties 

Maximum debond stress o* and initial frictional 
pull-out stress of, are usually measured from the ap- 
plied stress-displacement curve (Fig. 2) for the differ- 
ent embedded fibre lengths L in fibre pull-out tests. 
These experimental data can be used to calculate the 
interracial properties by matching the experimental 
data and the theoretical model. However, it is difficult 
to directly apply Equations 35 and 36 to determine 
four unknown parameters (i.e. ~, qo, Gc and Zm,x), even 
by regression, because or* is a complex function of the 
partial debond length as well as embedded fibre 
length. To establish a simple method for the evalu- 
ation of interracial properties on the basis of the pres- 
ent model, a stress drop analysis is developed as fol- 
lows. 

It is obvious from Equation 38 that gmax depends on 
the interfacial properties and the material constants of 
the constituents. However, in the more rigorous frac- 
ture mechanics approach used in this work a closed 
form solution for Zmax is not available. The technique 

4.1. Stress  drop  analys is  
As mentioned earlier, the maximum debond stress 
o* is obtained when the remaining bonded length, 
L - l, reaches a critical value Zmax (or o* is determined 
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at the initial debond propagation if the embedded 
fibre length is shorter than the critical bonded length 
Zm,x). From Equation 35, cy* is given by 

~ *  = ~ ,  + ( e  - ~ , ) { 1  - e x p [  - )~(L - z * ) ] }  

(4O) 

where the crack tip debond stress ch is determined at 
l = L - z*. After the maximum debond stress is reach- 
ed the partial debond stress decreases rapidly to the 
complete debond stress (or initial frictional pull-out 
stress) as shown in Fig. 3. Corresponding to this unsta- 
ble debonding process, a stress drop is observed and 
recorded by the stress-displacement curve in the fibre 
pull-out experiment (see Fig. 2). By using Equations 35 
and 36 the stress drop Ao, which is the difference 
between the maximum debond stress cy~' and the 
initial frictional pull-out stress err, is obtained from 

= e x p [ -  )~(L-  z*)] 

x {oh + 6[exp( - )~z*) - I]} (41) 

Further, taking the logarithm of both sides gives 

ln(Acy) = - X ( L -  z*) 

+ ln{~z+  6 [ e x p ( - ) ~ z * ) -  l]} (42) 

The logarithmic stress drop ln(A~) calculated from 
Equation 42 is plotted against the embedded fibre 
length L as shown in Fig. 7 for the carbon fibre-epoxy 
matrix composite studied in Part I [8]. It is seen that 
as the embedded fibre length increases from a very 
small value, ln(Ac0 increases non-linearly until it 
reaches a maximum value. After the maximum logar- 
ithmic stress drop is obtained, ln(Acy) decreases lin- 
early with L. According to the discussions in section 
3.2, it is known that z,,,~ is independent of embedded 
fibre length when L > z,,~ (Fig. 6) and the crack tip 
debond stress ch becomes almost a constant (Fig. 4). 
Therefore, differentiating Equation 42 with respect to 
L yields 

d 
d~[ln(AcY)] = - 1~ < 0 L > Zn,,~ (43) 
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Figure 7 Plots of logarithmic stress drop ln(Acy) as a function of 
embedded fibre length L for a carbon fibre-epoxy matrix composite 
[8] (la = 1.25, qo = - 9.97 MPa, Gr = 37.7 jm-2). 

Equation 43 means that when the embedded fibre 
length is longer than the critical bonded fibre length 
z . . . .  the slope of the ln(Acy)-L curve is always nega- 
tive and equal to - )~  which is related to the inter- 
facial friction coefficient Ix by Equation 20. For smaller 
embedded fibre lengths, i.e. 0 < L < z . . . .  ~ = ~* and 
z* = L (Fig. 6). In this case it can be shown that 

d 1 
~l_lntAc~)jr ' "~ = cr* + 6 [ e x p ( - ~ , L ) - l ]  

x \ dL - %(yexp( - (44) 

From Equation 36 it is noted that 

d~ - d L  dLd{ ~[1 - e x p ( -  XL)] } 

= L~yexp( - LL) (45) 

Hence, substituting Equation 45 into 44 yields 

d 1 
~ L l n t AG)  j r  , ,~ = o* + 6 [ e x p ( -  ~ L ) -  1] 

x \ d L  d L ]  (46) 

It is difficult to derive a closed-form formula for the 
derivative of the maximum debond stress with respect 
to the embedded fibre length because of the complex 
relationship between cy* and L. However, from Fig. 
4 it is shown that when the embedded fibre length is 
shorter than the critical bonded fibre length, the slope 
of the o*-L curve is larger than that of the cyfr-L 
curve. Therefore, from Equation 46 it is obtained that 

d 
d-L [ln(Acy)] > 0 L < z~,,x (47) 

According to Equations 43 and 47, it can be concluded 
that the maximum logarithmic stress drop ln(Acy) is 
obtained when the embedded fibre length is equal to 
the critical bonded fibre length Zm,x. 

4 .2 .  E v a l u a t i o n  o f  i n t e r f a c i a l  p r o p e r t i e s  

The major objective of the micromechanics analysis 
for the single-fibre pull-out test is to provide a theoret- 
ical basis for experimental evaluation of the interfacial 
properties. Based on the above debonding and stress 
drop analyses, the procedure for determining the in- 
terfacial properties may be summarized as follows. 

1. Determine zm,x from the ln(Acy) versus L curve. 
The stress drop data Ac U (j = 1 to n) measured from 
single-fibre pull-out experiments for different embed- 
ded fibre length Lj can be used to calculate ln(Ac~j) 
which is then plotted against Lj. The inflexion point of 
the experimental ln(A~j) versus Lj curve is the critical 
bonded fibre length Zma,. 

2. Determine X by measuring the slope of the 
ln(AcQ-L curve for the region L > Zma,. After Zm~x is 
found, the stress drop data in the region L > Zm,, can 
be used to obtain the reciprocal friction length k which 
in turn is related to the frictional coefficient Ix. If the 
slope of the ln(A~)-L curve is tan[3 by simple linear 

5 5 4 7  



regression, the reciprocal friction length X is given by 

X = - tan[3 (48) 

and from Equation 20 the interfacial friction coeffi- 
cient g can be obtained from 

~t = a X / 2 k  (49) 

3. Determine e from Equation 36. For the given 
experimental initial frictional stress data crf~,j (j = l to 
n) corresponding to the different embedded fibre 
lengths Lj there is only one unknown parameter ~r in 
Equation 36 after the interfacial friction coefficient 
la has been evaluated. Therefore, using a simple mean 
value method the asymptotic debond stress e is cal- 
culated from 

0 = O'fr'J (50) 
rtj= 1 1 -- e x ~  L X L j )  

Hence the residual clamping stress qo is given from 
Equation 21 by 

qo = - (~/o3k (51) 

4. Determine G~ from Equation 31. As in step 3, for 
the given experimental data CYd,j* and Lj the interfacial 

fracture toughness G~ can be evaluated from 

1 " 
- =Z I + * * G~ 2 ~ a n  j =  - -  O'd'J)(Yd'J 

+ D(O - cy*,j) 2] (52) 

where the debond lengths in the parameters B, C, and 
D are determined by lj = Lj - Zmax. 

To illustrate the application of the present methodo- 
logy, published fibre pull-out experimental data of 
maximum debond stress and initial frictional pull-out 
stress for steel wire-epoxy matrix [8, 14] and SiC 
fibre-glass matrix [-12] composites are chosen to 
evaluate their inteffacial properties. The material con- 
stants and geometric factors of the fibre and the 
matrix for the steel wire-epoxy matrix composite used 
in the experiments by Takaku and Arridge [14] have 
already been given in Table I. 

Fig. 8 shows the relationship of the experimental 
data between the logarithmic stress drop ln(A~j) and 
the embedded fibre length Lj for the release-agent 
coated steel wire-epoxy matrix [8, 14] (Fig. 8a and c), 
uncoated steel wire-epoxy matrix [14] (Fig. 8b) and 
acid-treated SiC fibre-glass matrix [12] (Fig. 8d). It is 
noted here and explained in Fig. 7 that if the shortest 
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Figure 8 Experimental relationships between logarithmic stress drop ln(Acr) and embedded fibre length L: (a) release-agent coated steel 
wirempoxy matrix composite, data taken from Kim et al. [-8]; (b) uncoated steel wire-epoxy matrix composite, data taken from Takaku and 
Arridge [14]; (c) release-agent coated steel wire-epoxy matrix composite, data taken from Takaku and Arridge [14]; and (d) acid-treated SiC 
fibre-glass matrix composite, data taken from Butler et al. [12]. 
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embedded fibre length Ls used in the experiment is 
smaller than the critical bonded fibre length Zm,x as in 
Fig. 8a and b, a distinct inflexion point can be located 
on the ln(Acr) versus L curve, so that an approximate 
Z~,x can be determined. However, if Ls is larger than 
zm,x as in Fig. 8c and d, a linear experimental ln(A~) 
versus L relationship is obtained for all embedded 
fibre lengths, though there is a fairly large scatter for 
the acid-treated SiC-glass composite (Fig. 8d). In this 
case, a small z~,x has to be assumed to evaluate the 
interfacial fracture toughness G~. Hence, for reliable 
evaluation of the interracial properties it is preferred 
that experimental results be obtained in the range 
L < Zma x in addition to L _> Zm,x. 

Following the steps outlined above, the interfacial 
properties of these fibre composites are determined 
and shown in Table II. Using these interfacial proper- 
ties the maximum debond stress and initial frictional 
pull-out stress are re-calculated based on Equations 
35 and 36, respectively, and are compared with experi- 
mental results in Fig. 9 for release-agent coated steel 
wire-epoxy matrix [8, 14] (Fig. 9a and c), uncoated 
steel wire--epoxy matrix [14] (Fig. 9b) and acid-treated 
SiC fibre-glass matrix 1-12] (Fig. 9d). It is obvious 
from these figures that the theoretical predictions (solid 

curves) agree well with the experimental data of the 
maximum debond stress and initial frictional pull-out 
stress. In other words, the theoretical curves plotted in 
Fig. 9 with the interfacial properties determined by the 
present methodology represent a best fit of Equation 
35 to the maximum debond stress data and Equation 
36 to the initial frictional pull-out stress data, respec- 
tively. This good agreement between theory and ex- 
periment has given confidence in the reliability of the 
interfacial properties (g, qo and G~) evaluated by the 
proposed methodology. 

TABLE II Interfacial properties for several fibre matrix com- 
posites 

Composite system # - qo Gc Zm~ 
(MPa) (Jm -2) (mm) 

Release-agent coated steel 0.25 6.26 65.5 8.1 
wire-epoxy matrix [8] 

Release-agent coated steel 0.09 13.3 54.1 2.64 
wire--epoxy [14] 

Uncoated steel wire-epoxy 0.45 13.3 198 2.24 
matrix [14] 

Acid-treated SiC fibre- 0.077 68.9 8.4 0.5 
glass matrix [12] 
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Figure 9 Comparisons between experimental results and theoretical predictions of maximum debond stress or* and initial frictional pull-out 
stress ~rf, as a function of embedded fibre length L: (a) release-agent coated steel wire-epoxy matrix composite, data taken from Kim et al. [8]; 
(b) uncoated steel wire-epoxy matrix composite, data taken from Takaku and Arridge [14]; (c) release-agent coated steel wire-epoxy matrix 
composite, data taken from Takaku and Arridge [14]; and (d) acid-treated SiC fibre-glass matrix composite, data taken from Butler et al. 
[12]. Experiments: (0) maximum debond stress cr*, (,t) initial frictional pull-out stress ~f,. Theory: ( ). 
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5. Conclusions 
A methodology for evaluation of the interfacial prop- 
erties g, qo, Gr and Zmax of fibre-matrix composites is 
proposed based on the theoretical model developed 
for fibre pull-out tests in Part II [-9] of this paper. The 
stress drop (Ao) analysis is presented to characterize 
the interface debonding instability and fibre pull-out. 
It is found that the maximum logarithmic stress drop 
ln(A~) is obtained when the embedded fibre length 
L is equal to the critical bonded fibre length Zm,x and 
that the slope of the ln(Ao)-L curve when L > Zm,x is 
related to the interfacial friction coefficient g. Applica- 
bility of the method to determine the interfacial prop- 
erties of several fibre composites is demonstrated. Fur- 
ther, in a parametric study on a carbon fibre-epoxy 
matrix composite, it is shown that fibre anisotropy has 
a significant effect on the maximum debond and fric- 
tional pull-out stresses. 
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